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The Trend of DL Algorithm and Hardware

% Recap of DL algorithms and hardware performance scaling.
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(Huge Potential with GPUs! But it still has a Large Gap!)
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Deep Learning Drives Computing Innovations

% Overview of my prior Ph.D. Research.
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My Prior PhD Research Recap
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My Prior Research Recap
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Diverse Precision Demands for DL Applications

“Low-precision quantized deep-learning applications.

Quantized Deep Learning Precision Requirements

QNNSs [JMLR' 18] 1-bit Weight, 2-bit Activation for Vision Model,
3-bit Weight, 4-bit Activation for Laonguage Model.

SGQuant [ICTAI'20] Graph Attention Model: 2-bit Neighbor Attention,
4-bit Neighbor Aggregation.

LLM.int8() [NeurlPS'22] 8-bit Quantization for Transformers.
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Low-precision deep-learning applications can leverage low-
precision GPU Tensor cores, but suffer from low efficiency.



Bit Composition for Quantized Deep Learning [SC'21]

% Insight: Quantized deep learning can be composed with the binary (1-bit) precision.

Example of 2-bit and 3-bit Precision in Quantized DNN Computing.
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A Typical Paradigm of Graph Deep Learning

Operation view

Model view
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Challenge of Mapping Sparse Computing to Dense Units
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Sparse Adjacent Matrix of Graph Largely Wasted Computation
and Memory Access

Direct mapping suffers from extra high memory consumption and
exiremely low computing efficiency.




TC-GNN: Order-Invariant Transformation [ATC'23]

* [regularly-scattered elements can be condensed to benefit high-performance dense GPU units.

4x4 tfile
Condense

o Less memory access.

Improved Computation
Intensity & Efficiency.

Origincﬂ Sparse Adjqcen’[ Matrix of Graph Condensed AdjOCGﬂT Matrix for Tensor Core

1.50x ~ 6.70x over DGL operators (CuUSPARSE).
Incorporated by SparseTIR in TVM Project.

10



R1: Patch-based Stable Diffusion Serving

e Architecture of Stable Diffusion Model.

Note that Conv are omitted in Unit for simplicity.



R1: Patch-based Stable Diffusion Serving

Resolution Index
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Note that the common factor of C*H*W is omitted for simplicity.



R1: Patch-based Stable Diffusion Serving

Unify the processing of
different resolutions

Control granularity for
mixed workload
composition

Unlock more fine-grained
pipelining (FCFS)
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a. Resolution-mismatch for largely sequent processing.

b. Decomposed Resolution for batched processing.




R2: Efficient DLRM with CXL Disaggregated Memory

 Typical architecture and configuration of DLRMs.

CTR Prediction

A
= )
4 ‘\"‘
[ Top MLP ] Hybrid-Parallel EMTs Raw
L 2| All-to-All e )| Raw Embeddings
[ Feature Interaction |« S| Alo-AllEm Sparse Embeddings _
J Feature . TI1 4x Bandwidth
Dense 1x Bandwidth
Feature
( Bottom MLP ) =Mt
ottom
/ /
y 3 / :
\ lepus J/é,ws Embedding -
1E5eeey 1,2,...N Tab]e
Dense Input Sparse Input
(e.g., ltem rating)

(e.g., User's age)
Memory Device Memory Devices

‘\(‘_:-:-ﬁj

Input Batches (dense + sparse) ZHYs,

,,,,,,




R2: Joint Optimization with Disaggregated Memory

e Hierarchical memory layout with fine-grained
access control enlarges design space.
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R2: Joint Optimization with Disaggregated Memory

+ Workload-aware Embedding Table Placement.
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@ Workload-aware Partition Placement
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% ILP formulation for joint memory and table optimization.
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Future Research: New Hardware-System Optimization
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Future Research: Exploring New DL Workloads
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Future Future: Secure and Resilient DL System
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