
1

Systematic Approaches for Efficient and Scalable 

Deep Learning

Yuke Wang@Rice CS



The Trend of DL Algorithm and Hardware
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❖ Recap of DL algorithms and hardware performance scaling.

Huge Potential with GPUs!  But it still has a Large Gap!
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Deep Learning Drives Computing Innovations
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Algorithm 
Innovation

ICML’20, 

CIKM’21, 

AAAI’21

Model Design, 

Model Pruning

(2018-19)

Hardware 

Accelerators

(2020-21)

Hardware 
Innovation

TCAD’21a, 

TCAD’21b, 

CCGrid’21

Runtime Systems,

Compiler

(2021-now)

Software
Innovation

OSDI’21, SC’21

PPoPP’22, OSDI’23, 

USENIX ATC’23

❖ Overview of my prior Ph.D. Research.



My Prior PhD Research Recap
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Sparsity

Precision

Static Sparse Dynamic SparseDense

Platforms

Single GPU

Multi-GPU

CPU+GPU/
Accelerator

Standard Precision

Quantized Precision

Extended Precision

INT2 INT4

INT32 FP16

FP16 FP16

Strengthening Individual 

Capabilities with 

Efficiency and 

Adaptability 

Empowering Holistic 

System design with 

Scalability



My Prior Research Recap
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Sparsity
Static Sparse Dynamic SparseDense

Platforms

Precision

Single GPU

Multi-GPU

CPU+GPU/
Accelerator

Standard Precision

Quantized Precision

Extended Precision

INT2 INT4

INT32 FP16

FP16 FP16
EGEMM-TC@PPoPP’21

APNN-TC@SC’21

TC-GNN@USENIX ATC’23

GNNAdvisor@OSDI’21

MGG@OSDI’23

Precision

Sparsity

Scalability



Diverse Precision Demands for DL Applications
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Quantized Deep Learning Precision Requirements

QNNs [JMLR’18] 1-bit Weight, 2-bit Activation for Vision Model, 

3-bit Weight, 4-bit Activation for Language Model.

SGQuant [ICTAI’20] Graph Attention Model: 2-bit Neighbor Attention, 

4-bit Neighbor Aggregation.

LLM.int8() [NeurIPS’22] 8-bit Quantization for Transformers.

... ...

FP16

BF16

INT8

INT4 INT1

Offload to GPU Tensor Cores

❖Low-precision quantized deep-learning applications.

Low-precision deep-learning applications can leverage low-
precision GPU Tensor cores, but suffer from low efficiency.
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Compute on Tensor Core:

 INT1 x INT1 --> UINT32

Bit Composition for Quantized Deep Learning [SC’21]
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❖ Insight: Quantized deep learning can be composed with the binary (1-bit) precision. 

3-bit Activation

Example of 2-bit and 3-bit Precision in Quantized DNN Computing.

1-bit 1-bit 1-bit

1-bit 1-bit2-bit Weight

Using and(&) for 

1-bit Multiplication 
MM-R2 MM-R3 MM-R4MM-R0

Multiplication between 3-bit Activation and 2-bit Weight

1-bit 1-bit 1-bit 1-bit 1-bit

MM-R5MM-R1

MM-PR0 MM-PR1

Reduction & Shift <<1 Reduction

MM-Out

Reduction

UINT32

UINT32

UINT32

2.3x over Tensor-core w/ 

coarse-grained Precision



Model view

= +

Graph Ops DNN Ops

GNN 
Layer

Operation view

A Typical Paradigm of Graph Deep Learning
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Challenge of Mapping Sparse Computing to Dense Units
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Direct mapping suffers from extra high memory consumption and 
extremely low computing efficiency. 

Adj

Ebd

Ebd-
New

Sparse Adjacent Matrix of Graph

>> A100/H100 

(80GB)

Largely Wasted Computation 

and Memory Access



TC-GNN: Order-Invariant Transformation [ATC’23]
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• Irregularly-scattered elements can be condensed to benefit high-performance dense GPU units.

Original Sparse Adjacent Matrix of Graph Condensed Adjacent Matrix for Tensor Core

4x4 tile

Condense
Less memory access.

Improved Computation 

Intensity & Efficiency.

1.50x ~ 6.70x over DGL operators (cuSPARSE).

Incorporated by SparseTIR in TVM Project.



R1: Patch-based Stable Diffusion Serving
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• Architecture of Stable Diffusion Model.

“A tree with green leaves”

#steps

U-net

Cross-attention layer.

Skip Connection

Encoder Decoder

Note that Conv are omitted in Unit for simplicity.

Latent feature map



R1: Patch-based Stable Diffusion Serving
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P1 P2 P3 P4

P1 P2 P3 P4

…

0

4(M - 1) 4M

4

…

P1 P2 P3 P4 P5 P6

P1 P2 P3 P4 P5 P6

…

4M+6

4M+6(N - 1)

4M

4M+6N

… ……

0 … 4M … …4
4M 
+ 6NImage Index

…Resolution Index
4M0 4M + 6N

Note that the common factor of C*H*W is omitted for simplicity.

Group Norm Cross Attention Convolution



R1: Patch-based  Stable Diffusion Serving
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Unify the processing of 
different resolutions

Control granularity for 
mixed workload  

composition

Unlock more fine-grained 
pipelining (FCFS)

a. Resolution-mismatch for largely sequent processing.

b. Decomposed Resolution for batched processing.

…



R2: Efficient DLRM with CXL Disaggregated Memory

14

• Typical architecture and configuration of DLRMs.



R2: Joint Optimization with Disaggregated Memory 
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•Hierarchical memory layout with fine-grained 

access control enlarges design space.

H: #Hierarchy



R2: Joint Optimization with Disaggregated Memory 
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❖Workload-aware Embedding Table Placement. ❖ ILP formulation for joint memory and table optimization.

Memory Unit 

Placement

Embedding Table 

Assignment

Memory 

Constraints

Optimize 

Transfer & Lookup
Efficiency

H is the number 
of memory 
hierarchy 



Future Research: New Hardware-System Optimization
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Precision

Operations

Platforms

Portability (Sustainable AI)

New Hardware-System Designs that adapt 
to diverse real-world application settings.

Efficient DLRM with 

Disaggregated 

Memory (e.g., CXL)

Accelerated DL with

Reconfigurable

Dataflow Architecture 

(e.g., SambaNova)

Eco-friendly DL with

Energy/Carbon-

aware HW-System 

Co-Optimization

• Co-design/optimization with 

diverse accelerators.

• Co-scheduling Workloads with 

Near-data Processing.

• Multi-Tenant Support for co-

locating Diverse DL 
applications.

• Dynamic Energy Scaling to 

balance runtime performance 

and energy cost.

• Carbon-Aware Scheduling to 

balance energy availability and 

job requirements.

• Compiler optimization for 

dataflow design space search.

• Workload-aware Runtime 
Dataflow Reconfiguration.



Portability (Sustainable AI)

New Hardware-System Designs that adapt 
to diverse real-world application settings.

Future Research: Exploring New DL Workloads
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Precision

Operations

Platforms

Satisfaction (Human-Centric AI)

New Algorithm-System designs that 
can intelligently suit various demands.

…

Resource-Efficient 
DL with Logarithmic 

Number System (LNS)

Patch-based 
Diffusion Model

Serving

Locality-aware 

Text-to-3D Scene

Construction

• Cross-iteration spatial and temporal 

in 360 Panorama rendering and 3D 

scene lifting.

• Cross device (e.g., multi-GPU 

platforms) objects artifacts locality.

• Dynamic DL precision with 

multi-base LNS. 

• Memory-efficient model 
quantization with selective LNS.

• SLO-aware dynamic re-

patching for efficient 

parallelism.

• Patch-based early exit 

for efficient diffusion.



Future Future: Secure and Resilient DL System
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Precision

Operations

Platforms

...
...

...

Portability (Sustainable AI)

New Hardware-System Designs that adapt 
to diverse real-world application settings.

Satisfaction (Human-Centric AI)

New Algorithm-System designs that 
can intelligently suit various demands.

…Safety (Trustworthy AI)

System that are Robust and Resilient.

Confidential/E
ncrypted 

DL Model 

Serving

Failure-resilient 
Collective 

Communication • Failure-resilient routine 

for heterogenous 

memory and 
compute devices.

• Holistic scheduling 

of encryption and 

regular DL ops for 
low-cost DL model 

training.

Efficient 
Watermarking for 

IP-Protected DL.

• Robustness-aware 

Watermarking for efficient 

real-time processing.



Thank You

Q & A
yuke.wang@rice.edu

github.com/YukeWang96

wang-yuke.com
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