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The Trend of DL Algorithm and Hardware

% Recap of DL algorithms and hardware performance scaling.
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(Huge Potential with GPUs! But it still has a Large Gap!)




Deep Learning Drives Computing Innovations

% Overview of my prior Ph.D. Research.
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My Prior Ph.D. Research Recap
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My Prior PhD Research Recap
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Diverse Precision Demands for DL Applications

“Low-precision quantized deep-learning applications.

Quantized Deep Learning Precision Requirements

QNNs [JMLR'18] 1-bit Weight, 2-bit Activation for Vision Model,
3-bit Weight, 4-bit Activation for Language Model.

SGQuant [ICTAI'20] Graph Attention Model: 2-bit Neighbor Attention,
4-bit Neighbor Aggregation.

LLM.int8() [NeurlPS'22] 8-bit Quantization for Transformers.

Offload to GPU Tensor Cores @ 2-bit 3-bit
Sign Exponent Weight . -

Register File (16,384 x 32-bit) AC.I.IVO TIOI’] . Pre Cl SIOH Dlvers”.y
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GPU Tensor cores would suffer
from low efficiency.




Bit Composition for Quantized Deep Learning [SC’21]

% Insight: Quantized deep learning can be composed with the binary (1-bit) precision.

Example of 2-bit and 3-bit Precision in Quantized DNN Computing.
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Multiplication between 3-bit Activation and 2-bit Weight

1-bit 1-bit 1-bit 1-bit 1-bit Compute on Tensor Core:

INTT x INT1 --> UINT32
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A Typical Paradigm of Graph Deep Learning

Operation view

Model view
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Challenge of Mapping Sparse Computing to Dense Units

~L
| |-
- - Ebd
“F4-L b >> A100/H100
= - Adj N (80GB)
= D _HE HE N N SrSu ew
I =~ —
I Dataset # Nodes | # Edges | Memory | Eff.Comp
T OVCR-8H | 1,890,931 | 3,946,402 | 14302.48 GB 0.36%
Yeast 1,714,644 | 3,636,546 | 11760.02 GB 0.32%
DD 334,925 | 1,686,092 448.70 GB 0.03%

Sparse Adjacent Matrix of Graph Largely Wasted Computation
and Memory Access

[Direc’r mapping: high memory consump’rion]

and low computing efficiency.




TC-GNN: Order-Invariant Transformation [ATC’23]

e [regularly-scattered elements can be condensed to benefit high-performance dense GPU unifts.

L]
[]
1]
[]
4x4 tile l.
Less memory access.
Condense L]
]
B Improved Computation
BE Intensity & Efficiency.
]
Original Sparse Adjacent Matrix of Graph Condensed Adjacent Matrix for Tensor Core

1.50x ~ 6.70x over DGL operators (CuUSPARSE).
Incorporated by SparseTIR in TVM Project.



In The Era of Generative Al
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Patch-based Diffusion Serving [PPoPP’26]

e Architecture of Image Diffusion Model.

“A free with green leaves”

Encoder |:| Cross-attention layer. Decoder

Skip Connection Latent feature map

Note that Conv are omitted in Unit for simplicity.



Hierarchical Tile Storage and Indexing

Resolution Index
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Note that the common factor of C*H*W is omitted for simplicity.



Tile-based Workload Scheduling

Unify the processing of j1> OO 5§ pn L
different resolutions m HE L L] DI =

Control granularity for
mixed workload _>

composition

B - BB e
I A R W

Unlock more fine—grained a. Resolution-mismatch for largely sequent processing.
pipelining (FCFS)
HEEEEEER NN EEEN

b. Decomposed Resolution for batched processing.




Evaluation

« End-to-End SLO satisfaction Ratio * Quality Score Comparison
[ NIRVANA-SLO [ Mixed-Cache-S5LO [ MixFusion-SLO
:0— NIRVANA-Goodput Mixed-Cache-Goodput == MixFusion-Goodput Model Method SDXL SD3
® 100, m—_ 100 T T T - = loa—
c 20| || LT 1.0 790] _w 712 COCO diffusiondb COCO diffusiondb
8 60 601 ) {93 cLp(y Ornginal 1492 1624 1479 1665
o 401 03 40 // 022 MixFusion  15.43 16.62 15.13  17.06
Vo201 | | (1| [+ 201 ( 38
S ( T o :/ LI IS Hoa @ Original ~ 31.92 35.56 28.94 32.38
ol 08 09 10 1.1 1.2 01 02 03 04 0.5 FID ('L) MixFusioN 28.85 33.42 26.56 38.01
QPS (Req/s) QPS (Req/s) i i i "
SDXL SD3

5.33x higher goodput when achieving 90 % SLO
while over SOTA NIRVANA [1]

[1] Agarwal, Shubham, et al. "Approximate caching for efficiently serving Text-to-lmage diffusion models."
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24) . 2024.



Ultra-Resolution Video Generation

e Architecture of Diffusion Transformer Model.
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Observation of Ultra-high-resolution Video Generation

* Maximum supported resolution and running time Why only supports 720p

Not enough high-resolution fraining
Model Max Resolution ~ Frames VRAM  Latency dataserts. (BIllIOﬂS)

CogVideoX1.5 5B [15] 1360 x 768 80 40GB 400s
HunyuanVideo 13B [20] 1280 x 720 128 70GB 1,800s

Tax =~ 1800s x (381021802 /3600 ~ 40 h,

Generation inefficiency
5-second 4K video directly couldtake = P) = ¢
How to training-free and a day and infensive memory cost.

efficiently to generate ultra-high-
resolution video? ‘L \L

Current super-resolution video generation?
Only fixed scale factor, not fraining-free W—



Opportunity: Sketching and Tiling

e Training-free Two-stage Generation

First stage:

Global Semantic Guidance

Second stage: Local Details Refinement

( Y ~\
a Low-Res Generation e Pixel-Space Upscaling
g ~ & Pixel Space %-’ —
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o High-Res Refinement S e Repeatktimes ~ _ _ _ _—="

Start by drawing an outline of
mountains.

'

Draw lines to indicate the plains.

J

'

Use dots and ticks to initially texture
the mountain.




System Support: Fine-grained Cache

e Observation: High similarity of predicted noise across timestep

E
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System Support: Fine-grained Caching Strategy

* Fine-grained Region-aware Cache High similarity of Cache Residual

£ 0064 > | < > | < > |
. - A : Unstable High similarity, stable Unstable
Infroduce cache residual &, = O, — I, < .04
2
1 O! ~ II @ E
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Cache if Kol <%

Decision else kL. >71

=> reuse cache at step 7,

= recompute O; and set ¢ 1.

1) Predict next diffusion
step outcome based on
current outcome.

2) Accumulate the
prediction errors to
determine caching.
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System Support: Intelligent Cost-efficient parallelism

Workload imbalance: e.g., 9 tiles on 4 GPUs

Cache-guided
Workload Rebalance

pak

Across all GPUs

orkloa ache |\ 2 3 orkioa 4 1 S 1
"t /=X feNOO] ) (@ ) A..gm,_.-fm-
Partition Predict %’7/] EE; [ E

4K(3x3 720p tiles)

EEEN

balance
(Aligather;

v

=

. Across all GPUs
E Latent tile i ready for timestep T+1

- Latent tile i ready for timestep T m Tile i can be cached at timestep T

|I, Cache status associated with tile i at timestep T [II Predicted noise for tile i at timestep T m Cache status associated with tile i at timestep T+1

QKV in different file are independent,
Minimum communication.

2) Reuse the computed
tiles in from prior iteration.

1) Reuse the computed
tiles in nearby GPUs.

([ (N (N 6 J[7][8 7 Y [7 18 ][5 ]
%|s||7||s|J h II7lI8|J ﬂulsnL DTT . e 5
| 6 1 718




Evaluation: Video Quality

Table 2: Quality results of SUPERGEN on VBench benchmark.
V1-V5 denote the five evaluation metrics: V1: Subject Consis- CogVideo HunyuanVideo
tency, V2: Background Consistency, V3: Motion Smoothness, . = o =
V4: Aesthetic Quality, and V5: Imaging Quality.

2000

-
e b -
e e e
=] = =]

1500

E2E Latency (seconds)
=
=
=

Model |  Setting | VI(%) V2%) V3(%) V&%) V5(%) Avg. 1000
720p 9629 9623 9841 61.88 7020 84.60 e 500
2K w/o Cache | 95.66 96.06 9722 6386 7038 84.64 00
Cogvideo | 2Kw/Cache | 9545 9591 9721 6275 6975 8421 ’ 2K O ’ 2K o
4K w/o Cache | 9294 9411 98.10 57.92 67.38 82.09 Resolution Resolution
4K w/ Cache 93.22 94.32 98.04 57.95 67.56 82.22 B origin w/ parallelism 4 GPUs B w/ parallelism 4 GPUs + cache
720p 98.55 97.86 9953 6454 7083 86.26
2K w/o Cache | 98.02 9731 99.42 6647 69.62 86.17
Hunyuanvideo | 2K w/Cache | 98.30 9748 99.44 66.16 7026 86.33 Figure 12: End-to-end latency. Origin setting is evaluated with
4KwioCache | 97.76 9724 9943 6307 6968 8544 I GPU without cache. The other two settings with parallelism
4K w/Cache | 98.12 97.58 9951 6257 7031 85.62

are measured with workload rebalance.

End-to-end can achieve

Both 2K and 4K can achieve high quality. up 10 6.2x speedup




Efficient and Adaptive Watermark Detection

e Overview of diffusion image watermarking

@ Model training (by Alice)

Decoder

Latent D
Generative Model
W

1
1
Yy

Latent

6011001 @f
Fine-tuning

, —_ | Z | — @f
Generative Model
Q ‘Tahiti mountains, in the style of Gauguin’

Image generation (by Bob)

Jx 011001 <@ Watermark Extractor

¢ pe ‘ |

=7

0 &
'.".';, ) M"

> |dentification @//‘g s W

Statistical Test @f@f Bl

— Detection ‘Al generated?’

v /X —

Watermark analysis Published
image

e Diffusion models now generate images nearly
indistinguishable from real photos.

 Social platforms face billions of daily uploads
(YouTube, TikTok, Facebook).

 Watermarking is critical for verifying Al-generated
content and copyright attribution.



Challenges of Diffusion Watermarking Detection

« Validation accuracy of naive tile-based .

Naive tile-based design brings only
Stable Signature on different tile size.

imited improvement.

None 128 96 30 64 48 32 16

-
U

B Without Tiling
B With Tiling_ s

0.997 0960 0933 0.897 0.8375 0.804 0.714 0.624

=
o

o
wn

Speedup (X)

o
o

1 4 8 16 32 64 128 256
Batch Size

Challenge-1: How to balance
the tfrade-off between
accuracy and efficiency?¢

Challenge-2: How 1o optimize the
tile-based watermark detection
pipeline for higher throughpute




Motivation from Real-world Observations

Observationl1: One file of an enfire image is Observation2: A QR code can still be
accurately and quickly even when

sufficient for watermark detection.
part of it is missing.

Accuracy reduction: 99% ->95% L o
. o . https://en.m.wikipedia.org/wiki/Main_Page
(even without pretraining on tiles)



Algorithmic-System Co-Design Solution

e Tile-based detection with RS Correction

(a) Pre-train tile-based watermark encoder/extractor

Random
010N BCELoss + RSLoss }----------- >
Random (e [Faoen) E
B Grid Til 7
L "”{% | He | @ % | Hp @ -1010..)
3 e _ (L ) Decoded
Xo Xy Xu

Decoded
& Ho
& B8  Grid Tile s
Reed-Solomon - i
('n:IOION.%{ e—— ——(m, : 1010...)« - ---{BCELoSS } - ------------ J
Fixed — Encoded

{Optional)

Decoded

9! 4 ) ATV Hp m': 1010..
4  Grid Tile s
Users Z

Reed-Solomon
AT S MPARDS - (e 00—
g: 1010 Col Q:AR ¢, : 1010 Correction

Ground Truth Corrected

Leverage RS correction to offset the
accuracy degradation caused by tiling

 Adaptively allocate CUDA stream for each stage

(a) Our Adaptive CUDA Stream Allocation Strategy

Pstream:i[ B P2 Pn P, |
H 3 = B ens 8 : - | .
P Streamng:: | p, P2 Pn P, i
T Stream 1: || T T2 To Ll
[ : : e : :
T Stream ng: | | T T2 To R
D Stream 1: | D, D2 D, D
FR ; B : e : : .
D Stream ng4: 3 Dy Dz D, Dy
t | T Time
START : : 1 : i
i Batch 1 Batch 2 Batch Batchn:Batch1 Batch
3..n-1 i 2.n-1
Iter 0 Itér1 Itér 2
Startup State Steady State
(b) Regular Single Stream Strategy
singlesteam:: [k, | T [ b | -] P. | T. | D
: — —Time
START ! —
i Batch 1 Batch Batch n
' 2..n-1 '
Iter 0 Iter 1
Universal State
Preprocessing Stage for Dy Decoding Stage for - Batch
Batch x Batch x End
Tiling Stage for idle  emeeee- Iteration
Batch x End

Equalize the per-minibatch
execution time across stages



End-to-end Performance

e End-tfo-end accuracy and robustness e End-to-end Throughput

3%}
wn
=3
L=}

I Original Stable Signature
3000 - B Stable Signature w/ QRMark

:
= 2500 -
Model TS BitAcc.T BitAcc. (ADV.)T PSNRt TPR1?T ‘§2°°"
16 0.748 0.665 27.67 0.761 E 1000-
32 0.989 0.907 2947 0.993 ; 500-
Stablegr 48 0.997 0.933 29.63 0.996 Yo 5 2 o
64 0.999 (0.945 30.35 0.998 paten Size
80 0.999 0.949 30.76 0.999
140 - HEE Original AgualoRA
Stﬂh]CBL ﬂggg ﬂg?‘:l- 3{}[}5 ﬂggj EEE Original AqualoRA (Batched) - .
120- mmm AquaLoRs w/ QRMark o i i
Aqual.oRAgr 256 0.947 (0.B83 17.13 0.970 100 : .
Aqual oRAgy 0.958 0.912 17.65 0.985

=1}
=

i
(=]

[
k=3

End-to-End Throughput {images/s)
W
[=]

o

1 4 8 16 3z 64 128
Batch Size

2.20x over Stable Signature [1]
and 2X over AQuUalLoRA [2].

[1] Fernandez, Pierre, et al. "The stable signature: Rooting watermarks in latent diffusion models."
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.
[2] Feng, Weitao, et al. "Aqualora: Toward white-box protection for customized stable diffusion models via watermark lora." arXiv preprint



Future Research: New Hardware-System Optimization

Precision
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/
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Eco-friendly DL with

Energy/Carbon-
aware HW-System
Co-Optimization

o

L

Portability (Sustainable Al)

New Hardware-System Designs that adapt
to diverse real-world application seftings.

J

Accelerated DL with
Reconfigurable
Dataflow Architecture
(e.g., SambaNova)

#y

Efficient DLRM with
Disaggregated
Memory (e.g., CXL)



Future Research: Exploring New DL Workloads

Precision

1
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Platforms
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Text-to-3D Scene
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@

@ New Algorithm-System designs that
can intelligently suit various demands.
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Future Future: Secure and Resilient DL System

Portability (Sustainable Al) W

Precision Be— Confidential/

t " satisfaction (Human-Centric Al) ] Encrypted
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