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The Trend of DL Algorithm and Hardware
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❖ Recap of DL algorithms and hardware performance scaling.

Huge Potential with GPUs!  But it still has a Large Gap!
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Deep Learning Drives Computing Innovations
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Algorithm 

Innovation

ICML’20, 
CIKM’21, 

AAAI’21

Model Design, 

Model Pruning

(2018-19)

Hardware 

Accelerators

(2020-21)

Hardware 

Innovation

TCAD’21a, 
TCAD’21b, 

CCGrid’21

Runtime Systems,

Compiler

(2021-now)

Software

Innovation

OSDI’21, SC’21
PPoPP’22, OSDI’23, 

USENIX ATC’23

❖ Overview of my prior Ph.D. Research.



My Prior Ph.D. Research Recap
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Sparsity

Precision

Static Sparse Dynamic SparseDense

Platforms

Single GPU

Multi-GPU

CPU+GPU/
Accelerator

Standard Precision

Quantized Precision

Extended Precision

INT2 INT4

INT32 FP16

FP16 FP16

Strengthening Individual 

Capabilities with 

Efficiency and 

Adaptability

Empowering Holistic 

System design with 

Scalability



My Prior PhD Research Recap
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Sparsity
Static Sparse Dynamic SparseDense

Platforms

Precision

Single GPU

Multi-GPU

CPU+GPU/
Accelerator

Standard Precision

Quantized Precision

Extended Precision

INT2 INT4

INT32 FP16

FP16 FP16

MGG@OSDI’23

Scalability

Precision

EGEMM-TC@PPoPP’21

APNN-TC@SC’21

GNNAdvisor@OSDI’21

TC-GNN@USENIX ATC’23

Sparsity



Diverse Precision Demands for DL Applications
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Quantized Deep Learning Precision Requirements

QNNs [JMLR’18] 1-bit Weight, 2-bit Activation for Vision Model, 

3-bit Weight, 4-bit Activation for Language Model.

SGQuant [ICTAI’20] Graph Attention Model: 2-bit Neighbor Attention, 

4-bit Neighbor Aggregation.

LLM.int8() [NeurIPS’22] 8-bit Quantization for Transformers.

... ...

❖Low-precision quantized deep-learning applications.

GPU Tensor cores would suffer 
from low efficiency.
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Compute on Tensor Core:

INT1 x INT1 --> UINT32

Bit Composition for Quantized Deep Learning [SC’21]
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❖ Insight: Quantized deep learning can be composed with the binary (1-bit) precision. 

3-bit Activation

Example of 2-bit and 3-bit Precision in Quantized DNN Computing.

1-bit 1-bit 1-bit

1-bit 1-bit2-bit Weight

Using and(&) for 

1-bit Multiplication 
MM-R2 MM-R3 MM-R4MM-R0

Multiplication between 3-bit Activation and 2-bit Weight

1-bit 1-bit 1-bit 1-bit 1-bit

MM-R5MM-R1

MM-PR0 MM-PR1

Reduction & Shift <<1 Reduction

MM-Out

Reduction

UINT32

UINT32

UINT32

2.3x over Tensor-core w/ 
coarse-grained Precision



Model view
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Graph Ops DNN Ops

GNN 

Layer

Operation view

A Typical Paradigm of Graph Deep Learning
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Challenge of Mapping Sparse Computing to Dense Units
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Sparse Adjacent Matrix of Graph

Adj

Ebd

Ebd-

New

>> A100/H100 

(80GB)

Largely Wasted Computation 

and Memory Access

Direct mapping: high memory consumption 

and low computing efficiency. 



TC-GNN: Order-Invariant Transformation [ATC’23]
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• Irregularly-scattered elements can be condensed to benefit high-performance dense GPU units.

Original Sparse Adjacent Matrix of Graph Condensed Adjacent Matrix for Tensor Core

4x4 tile

Condense
Less memory access.

Improved Computation 

Intensity & Efficiency.

1.50x ~ 6.70x over DGL operators (cuSPARSE).

Incorporated by SparseTIR in TVM Project.



In The Era of Generative AI



Patch-based Diffusion Serving [PPoPP’26]
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• Architecture of Image Diffusion Model.

“A tree with green leaves”

#steps

U-net

Cross-attention layer.

Skip Connection

Encoder Decoder

Note that Conv are omitted in Unit for simplicity.

Latent feature map



Hierarchical Tile Storage and Indexing
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P1 P2 P3 P4

P1 P2 P3 P4

…

0

4(M - 1) 4M

4

…

P1 P2 P3 P4 P5 P6

P1 P2 P3 P4 P5 P6

…

4M+6

4M+6(N - 1)

4M

4M+6N

… ……

0 … 4M … …4
4M 
+ 6NImage Index

…Resolution Index
4M0 4M + 6N

Note that the common factor of C*H*W is omitted for simplicity.

Group Norm Cross Attention Convolution



Tile-based Workload Scheduling
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Unlock more fine-grained 
pipelining (FCFS)

a. Resolution-mismatch for largely sequent processing.

b. Decomposed Resolution for batched processing.

Unify the processing of 
different resolutions

…

Control granularity for 
mixed workload  

composition



Evaluation

• End-to-End SLO satisfaction Ratio • Quality Score Comparison

5.33× higher goodput when achieving 90 % SLO 

while over SOTA NIRVANA [1]

[1] Agarwal, Shubham, et al. "Approximate caching for efficiently serving Text-to-Image diffusion models."

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24). 2024.



Ultra-Resolution Video Generation
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• Architecture of Diffusion Transformer Model.



Observation of Ultra-high-resolution Video Generation
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• Maximum supported resolution and running time

Generation inefficiency

5-second 4K video directly could take 

a day and intensive memory cost.How to training-free and 

efficiently to generate ultra-high-

resolution video?

Current super-resolution video generation? 
Only fixed scale factor, not training-free

Why only supports 720p
Not enough high-resolution training 

datasets. (Billions)



Opportunity: Sketching and Tiling
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• Training-free Two-stage Generation

First stage: Global Semantic Guidance

Second stage: Local Details Refinement



System Support: Fine-grained Cache
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How to Utilize this Similarity?

• Observation: High similarity of predicted noise across timestep



System Support: Fine-grained Caching Strategy
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• Fine-grained Region-aware Cache High similarity of Cache Residual

Cache 
Decision

Introduce

Approximate

Error Accumulation

Involve transformation rate

Transformation Rate K is Stable

1) Predict next diffusion 
step outcome based on 

current outcome.

2) Accumulate the 
prediction errors to 

determine caching.



System Support: Intelligent Cost-efficient parallelism
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QKV in different tile are independent, 

Minimum communication.

Workload imbalance: e.g., 9 tiles on 4 GPUs 

Cache-guided 
Workload Rebalance

1) Reuse the computed 

tiles in nearby GPUs.

2) Reuse the computed 

tiles in from prior iteration.



Evaluation: Video Quality
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Both 2K and 4K can achieve high quality.
End-to-end can achieve 

up to 6.2x speedup.



Efficient and Adaptive Watermark Detection 
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•Overview of diffusion image watermarking

• Diffusion models now generate images nearly 

indistinguishable from real photos.

• Social platforms face billions of daily uploads 

(YouTube, TikTok, Facebook).

• Watermarking is critical for verifying AI-generated 

content and copyright attribution.



Challenges of Diffusion Watermarking Detection
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Challenge-1: How to balance 

the trade-off between 

accuracy and efficiency?

Challenge-2: How to optimize the 

tile-based watermark detection 

pipeline for higher  throughput?

• Naive tile-based design brings only 

limited improvement.

• Validation accuracy of naive tile-based  

Stable Signature on different tile size. 



Motivation from Real-world Observations
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Observation1: One tile of an entire image is 

sufficient for watermark detection. 

Accuracy reduction: 99% ->95% 

(even without pretraining on tiles)

Observation2: A QR code can still be 

accurately and quickly even when 

part of it is missing.

https://en.m.wikipedia.org/wiki/Main_Page



Algorithmic-System Co-Design Solution
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• Adaptively allocate CUDA stream for each stage

Equalize the per-minibatch 
execution time across stages

• Tile-based detection with RS Correction

Leverage RS correction to offset the 

accuracy degradation caused by tiling



End-to-end Performance
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• End-to-end accuracy and robustness • End-to-end Throughput 

2.20x over Stable Signature [1]  

and 2X over AquaLoRA [2].

[1] Fernandez, Pierre, et al. "The stable signature: Rooting watermarks in latent diffusion models."

Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

[2] Feng, Weitao, et al. "Aqualora: Toward white-box protection for customized stable diffusion models via watermark lora." arXiv preprint 

arXiv:2405.11135 (2024).



Future Research: New Hardware-System Optimization
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Precision

Operations

Platforms

Portability (Sustainable AI)

New Hardware-System Designs that adapt 
to diverse real-world application settings.

Efficient DLRM with 

Disaggregated

Memory (e.g., CXL)

• Co-design/optimization with 
diverse accelerators.

• Co-scheduling Workloads with 
Near-data Processing.

• Multi-Tenant Support for co-
locating Diverse DL 

applications.

Eco-friendly DL with

Energy/Carbon-
aware HW-System

Co-Optimization

• Dynamic Energy Scaling to 
balance runtime performance 

and energy cost.

• Carbon-Aware Scheduling to 

balance energy availability and 
job requirements.

Accelerated DL with 

Reconfigurable 

Dataflow Architecture 
(e.g., SambaNova)

• Compiler optimization for 
dataflow design space search.

• Workload-aware Runtime 

Dataflow Reconfiguration.



Portability (Sustainable AI)

New Hardware-System Designs that adapt 
to diverse real-world application settings.

Future Research: Exploring New DL Workloads
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Precision

Operations

Platforms

Satisfaction (Human-Centric AI)

New Algorithm-System designs that 
can intelligently suit various demands.

…

Locality-aware

Text-to-3D Scene

Construction

• Cross-iteration spatial and temporal 
in 360 Panorama rendering and 3D 

scene lifting.

• Cross device (e.g., multi-GPU 

platforms) objects artifacts locality.

Resource-Efficient 
DL with Logarithmic 

Number System (LNS)

• Dynamic DL precision with 
multi-base LNS. 

• Memory-efficient model 

quantization with selective LNS.

Patch-based 
Diffusion Model

Serving

• SLO-aware dynamic re-
patching for efficient 

parallelism.

• Patch-based early exit 

for efficient diffusion.



Future Future: Secure and Resilient DL System
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Precision

Operations

Platforms

...
...

Portability (Sustainable AI)

New Hardware-System Designs that adapt 
to diverse real-world application settings.

Satisfaction (Human-Centric AI)

New Algorithm-System designs that 
can intelligently suit various demands.

…Safety (Trustworthy AI)

System that are Robust and Resilient.

Failure-resilient 
Collective 

Communication
• Failure-resilient routine 

for heterogenous 

memory and 

compute devices.

Confidential/
Encrypted

DL Model 

Serving

• Holistic scheduling 
of encryption and 

regular DL ops for 

low-cost DL model 
training.

Efficient
Watermarking for 

IP-Protected DL.

• Robustness-aware 
Watermarking for efficient 

real-time processing.



Thank You

Q & A
yuke.wang@rice.edu

github.com/YukeWang96

wang-yuke.com
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